diff --git a/How to.odt b/How to.odt new file mode 100644 index 0000000..2682ade Binary files /dev/null and b/How to.odt differ diff --git a/mine.ipynb b/mine.ipynb new file mode 100644 index 0000000..40d7f18 --- /dev/null +++ b/mine.ipynb @@ -0,0 +1,411 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#Import the required modules\n", + "from sklearn.datasets import make_classification\n", + "from matplotlib import pyplot as plt\n", + "from sklearn.linear_model import LogisticRegression\n", + "import seaborn as sns\n", + "sns.set()\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import confusion_matrix\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-1.04798669]\n", + " [-1.18533122]\n", + " [ 1.30388268]\n", + " [ 0.77921082]\n", + " [-0.66270304]\n", + " [-0.73517511]\n", + " [ 1.0129303 ]\n", + " [-0.93736332]\n", + " [-1.22869413]\n", + " [-1.29906245]\n", + " [ 0.84625523]\n", + " [-0.44678384]\n", + " [-1.27810116]\n", + " [-0.81715397]\n", + " [-1.3759646 ]\n", + " [-1.45907172]\n", + " [ 0.86213447]\n", + " [ 1.31966782]\n", + " [ 0.992724 ]\n", + " [-0.59239048]\n", + " [-1.04680338]\n", + " [-0.09286521]\n", + " [ 0.97648125]\n", + " [-1.1542901 ]\n", + " [ 0.64743536]\n", + " [ 0.83918906]\n", + " [ 1.2009213 ]\n", + " [ 1.10163923]\n", + " [-0.55377165]\n", + " [ 0.85945976]\n", + " [-1.33699615]\n", + " [-0.70839315]\n", + " [-0.89077893]\n", + " [ 1.3955816 ]\n", + " [ 0.79877718]\n", + " [-1.10126753]\n", + " [-0.77791645]\n", + " [-0.9837044 ]\n", + " [-0.00471974]\n", + " [ 0.42358359]\n", + " [ 0.97323393]\n", + " [ 1.01961803]\n", + " [ 0.88678014]\n", + " [-0.58178967]\n", + " [-1.01645497]\n", + " [ 1.01866018]\n", + " [ 0.97811732]\n", + " [-0.46328955]\n", + " [-0.58220468]\n", + " [ 1.200104 ]\n", + " [ 0.96129761]\n", + " [ 1.07521231]\n", + " [-1.06676283]\n", + " [ 0.66703245]\n", + " [-1.48266358]\n", + " [-0.95379103]\n", + " [-0.50922448]\n", + " [ 0.5766528 ]\n", + " [-0.68286227]\n", + " [-1.07421386]\n", + " [-0.79172877]\n", + " [-1.32897534]\n", + " [ 0.92527711]\n", + " [-1.63144075]\n", + " [ 0.98152769]\n", + " [-0.9277596 ]\n", + " [ 0.99513204]\n", + " [-1.56576004]\n", + " [-1.18322963]\n", + " [-1.26981413]\n", + " [ 1.17981389]\n", + " [ 1.19795714]\n", + " [-0.8895733 ]\n", + " [ 1.30158202]\n", + " [ 0.96883211]\n", + " [ 0.75274277]\n", + " [-1.02120842]\n", + " [-0.90877379]\n", + " [-0.6296421 ]\n", + " [ 0.86470982]\n", + " [-0.8515186 ]\n", + " [ 1.16013882]\n", + " [-0.75516721]\n", + " [-1.32044924]\n", + " [ 1.08864952]\n", + " [ 1.31526124]\n", + " [-0.69391671]\n", + " [ 0.93398792]\n", + " [-1.42212025]\n", + " [-1.16417858]\n", + " [-1.21467772]\n", + " [-1.27889807]\n", + " [-0.3769908 ]\n", + " [ 0.91999288]\n", + " [-1.56485036]\n", + " [-1.01986862]\n", + " [ 0.84728703]\n", + " [-0.66573826]\n", + " [ 0.99244273]\n", + " [ 1.15776142]\n", + " [ 1.01505624]\n", + " [ 0.89444983]\n", + " [ 1.50345731]\n", + " [-0.99158212]\n", + " [ 1.15662115]\n", + " [ 0.99783538]\n", + " [ 0.86208113]\n", + " [-0.55094122]\n", + " [ 0.99835555]\n", + " [ 0.71681001]\n", + " [-1.91372087]\n", + " [ 0.76479732]\n", + " [ 1.27156396]\n", + " [ 1.09839751]\n", + " [ 1.00400252]\n", + " [-0.75344864]\n", + " [ 0.60223506]\n", + " [-1.73194991]\n", + " [-1.5929839 ]\n", + " [-1.28884636]\n", + " [ 0.87351535]\n", + " [ 0.48517228]\n", + " [-1.52216478]\n", + " [ 0.69444818]\n", + " [ 0.85601014]\n", + " [-1.34117394]\n", + " [ 1.06720227]\n", + " [-1.31004995]\n", + " [-0.97309369]\n", + " [-0.83737283]\n", + " [ 0.82328655]\n", + " [-1.36708274]\n", + " [ 0.70692957]\n", + " [ 1.03636045]\n", + " [-0.99336523]\n", + " [-0.87996869]\n", + " [-1.36451102]\n", + " [ 0.68029636]\n", + " [-1.41461592]\n", + " [ 1.16286916]\n", + " [-1.08334534]\n", + " [ 0.85772781]\n", + " [-1.11696295]\n", + " [ 0.87627224]\n", + " [ 0.95710966]\n", + " [ 0.75226261]\n", + " [ 0.69270705]\n", + " [-1.7941007 ]\n", + " [ 0.90707982]\n", + " [ 0.88402826]\n", + " [-1.01107845]\n", + " [-0.29958654]\n", + " [-1.13859804]\n", + " [ 1.07290754]\n", + " [ 0.60718351]\n", + " [ 1.09774186]\n", + " [ 0.83100714]\n", + " [-1.96633847]\n", + " [-0.98418513]\n", + " [-0.9663529 ]\n", + " [ 1.1207593 ]\n", + " [ 1.52081546]\n", + " [ 1.04894859]\n", + " [ 0.79643643]\n", + " [ 0.92910662]\n", + " [ 0.91140536]\n", + " [-0.46227849]\n", + " [ 0.88936215]\n", + " [ 0.93760681]\n", + " [ 0.83783787]\n", + " [-1.86302163]\n", + " [-1.1519962 ]\n", + " [-1.27718473]\n", + " [ 0.77842533]\n", + " [ 1.04897324]\n", + " [ 0.89562746]\n", + " [-1.52215334]\n", + " [ 0.72946825]\n", + " [ 1.0339013 ]\n", + " [-1.30609303]\n", + " [-1.19891745]\n", + " [-0.77372154]\n", + " [-1.21857242]\n", + " [-0.57381702]\n", + " [-0.92105519]\n", + " [-1.56994703]\n", + " [ 0.83183766]\n", + " [ 0.9388098 ]\n", + " [-0.92321381]\n", + " [ 0.95491747]\n", + " [ 0.97491984]\n", + " [ 1.27302445]\n", + " [ 0.86112564]\n", + " [-1.12353232]\n", + " [-0.53593672]\n", + " [ 1.37928873]\n", + " [-0.771236 ]\n", + " [ 0.94489733]\n", + " [-1.01449996]\n", + " [ 0.95553333]]\n" + ] + } + ], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0\n", + " 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1\n", + " 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0\n", + " 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0\n", + " 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0\n", + " 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1]\n" + ] + } + ], + "source": [ + "print(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#Generate the data set\n", + "x,y = make_classification(n_samples=200,\n", + " n_features=1,\n", + " n_classes=2,\n", + " n_clusters_per_class=1,\n", + " flip_y=0.03,\n", + " n_informative=1,\n", + " n_redundant=0,\n", + " n_repeated=0 \n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD3CAYAAAAALt/WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFstJREFUeJzt3X9w23d9x/Gnfli2E8uxkyiUJrBC27zX0bVNl0EKLbBeC2uPjo5jB8tubIWysu2OjRzHUdgBu8E4titQdnSMX3djjLX8WEb50XKUsq1NmyvQrLRQ3sHQQhtSIjduLMe2JMveH5KMoujHV45k+QOvx12vlj7f71cvf/TVy199/XUUW1paQkREwhXvdwARETk1KnIRkcCpyEVEAqciFxEJnIpcRCRwydV+wGw21/FlMuPj65iamu1FnJ4IKa+y9k5IeUPKCmHl7VbWTCYdazYWxBF5Mpnod4SOhJRXWXsnpLwhZYWw8q5G1iCKXEREmlORi4gETkUuIhI4FbmISOBU5CIigVORi4gETkUuIhK4Vf+DIOm+fLHEsZk8G0YGGRwI5/pa6b/qvpPeMNxyudxsgcePzLBtywjpdakT9jmAQ5MzHJ2eZ3Q4RTIZIzWQZDiV4FB2hsHBJOuHBhhOJTgyNceW8WEmj83xkydmiMeWyM0WmS8UK9td5JlPS5MvLHI0N0cymWBsfYrHsjPE4zEWigvMF5d4zpmbOTJ5nF//tTGeOl5gYWGJkXUDzBcWSMbiTM/mOXvbGIlEnA0jg8zMFvjeI0fZODrI2MggiXiMRw7nsGeOsanme6/9PgEO/nSKpVgMe8YY6XWpE+ZseDDJXH6h5esuXyxxePI4c7OFtsueChV5wEqLi9xy5wQHDmY5Op1n4+ggO7ZneNWlZ5GI682WNFe/72TGhznvzE0n7TuFhQXe86n7OZSdYXEJ4jFYN5RkIBFjaqZIKhmjsLD6n2lw13efqHxx6tsaGU7yd69/Hu+/+YHl77ORrZvXYc8c44GJJ3lyOk88BotLsDGd4kLbcsLcVef3fj/C0VxhedlNPXqNRipyM3se8D53f3Hd/VcB7wAWgE+6+8e6lkzauuXOCe749uPLt5+czi/f3n3Z9n7FkgDU7ztHpuYa7jvv+dT9PHZkZvn24hLMzC0s3+5HiXfbzNwCez60j3bfyaHJWQ5N/uJP7auFfzRXOGnu6ue3umyvXqNtfySY2VuAjwNDdfcPAB8AXgK8CPgzMzuta8mkpXyxxIGD2YZjBw5Oki+WVjmRhCLqvpObLXAoO9NwuV823fhxVJ27VvNbv2y3RDki/xHwCuDf6u4/B5hw9ykAM7sbuAT4XKuNjY+vW9G/PZDJpDtep596nffw5HGO5vINx6Zy8yRSA2Q2r4+0rZDmNqSssDbzRt13fvbDbNPTDHKy6twBTee3ftmor9F22ha5u3/BzM5oMDQKHKu5nQM2tNveSv4VsEwmTTab63i9flmNvKViiY3pQZ6cPnmHGU8PUSoUI2UIaW5DygprN2/UfSedii+f25X2qnMHNJ3f+mU72T9aHRScytn2aaB2y2ngqVPYnnRgcCDBju2ZhmM7tm/W1SvSVNR9J70uxdbMyGpG65um/z5sB6pz12p+65ftllMp8oeBs81so5mlgBcC93YnlkTxqkvP4rKd29g0OkQ8BptGh7hs5zZedelZ/Y4ma1z9vrNlfLjhvvP211zIM7aMEK80XTxWvspjfCRFDEglu1GB/TUynOT9b3zBCd9nI1s3r+PSC09n02j5ksvqshvTgyfNXXV+N6ZPXHbT6MnLdkNsaan9+6bKqZWb3X2Xme0GRtz9ozVXrcQpX7Xy4XbbWskHS6zVt6jNrHbeU7mOPKS5DSkrhJG3uu+cecYmcsfmmi6n68hXfh15IjXA3PH5U76OvNUHS0Qq8m5Ska8tyto7IeUNKSuElbdbWYP/hCAREWlORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iErhkuwXMLA7cBJwP5IFr3X2iZvzNwB8Ci8Dfu/veHmUVEZEGohyRXw0MuftFwFuBG6oDZjYGvBG4CHgJ8MFehBQRkeaiFPnFwO0A7r4f2Fkzdhz4CbC+8t9itwOKiEhrbU+tAKPAsZrbJTNLuvtC5fZjwPeBBPDedhsbH19HMpnoOGgmk+54nX4KKa+y9k5IeUPKCmHl7XXWKEU+DdSmiNeU+BXA04FnVW5/zcz2uft9zTY2NTXbcchMJk02m+t4vX4JKa+y9k5IeUPKCmHl7VbWVj8Mopxa2QdcCWBmu4AHa8amgDkg7+7zwFPA2IqTiohIx6Icke8FLjeze4AYcI2Z7QEm3P1WM7sM2G9mi8DdwNd7F1dEROq1LXJ3XwTeUHf3D2rG3wm8s8u5REQkIv1BkIhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBS7ZbwMziwE3A+UAeuNbdJ2rGrwDeWbl5P/CX7r7Ug6wiItJAlCPyq4Ehd78IeCtwQ3XAzNLAPwIvc/ddwKPA5h7kFBGRJqIU+cXA7QDuvh/YWTP2fOBB4AYzuwv4ubtnu55SRESaantqBRgFjtXcLplZ0t0XKB99/w5wATAD3GVm97r7wWYbGx9fRzKZ6DhoJpPueJ1+CimvsvZOSHlDygph5e111ihFPg3UpohXShzgSeBb7v4EgJn9L+VSb1rkU1OzHYfMZNJks7mO1+uXkPIqa++ElDekrBBW3m5lbfXDIMqplX3AlQBmtovyqZSq7wDnmtlmM0sCu4DvrzyqiIh0KsoR+V7gcjO7B4gB15jZHmDC3W81s+uBr1WW/ay7P9SjrCIi0kDbInf3ReANdXf/oGb8ZuDmLucSEZGI9AdBIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iErhkuwXMLA7cBJwP5IFr3X2iwTJfAb7o7h/pRVAREWksyhH51cCQu18EvBW4ocEy7wY2djOYiIhE0/aIHLgYuB3A3feb2c7aQTN7JbAI3BblAcfH15FMJjrNSSaT7nidfgopr7L2Tkh5Q8oKYeXtddYoRT4KHKu5XTKzpLsvmNm5wG7glcA7ojzg1NRsxyEzmTTZbK7j9folpLzK2jsh5Q0pK4SVt1tZW/0wiFLk00DtFuLuvlD5+jXAVuBO4AygYGaPuvvtK4sqIiKdilLk+4CrgM+a2S7gweqAu7+l+rWZvQt4QiUuIrK6ohT5XuByM7sHiAHXmNkeYMLdb+1pOhERaattkbv7IvCGurt/0GC5d3Upk4iIdEB/ECQiEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4FTkIiKBU5GLiARORS4iEjgVuYhI4JLtFjCzOHATcD6QB65194ma8TcBr67c/Kq7/20vgoqISGNRjsivBobc/SLgrcAN1QEzezbwR8DzgYuAl5jZeb0IKiIijUUp8ouB2wHcfT+ws2bsMeB33b3k7ovAADDf9ZQiItJUbGlpqeUCZvZx4Avuflvl9k+BZ7v7Qs0yMeAfgbS7X9dqewsLpaVkMnHKwUVEfsXEmg20PUcOTAPpmtvxuhIfAj4J5IC/aLexqanZCA95okwmTTab63i9fgkpr7L2Tkh5Q8oKYeXtVtZMJt10LMqplX3AlQBmtgt4sDpQORL/IvCAu1/n7qVTiyoiIp2KckS+F7jczO6hfGh/jZntASaABPAiYNDMrqgsf72739uTtCIicpK2RV75JeYb6u7+Qc3XQ11NJCIiHdEfBImIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBE5FLiISOBW5iEjgVOQiIoFTkYuIBC7Z7wCdyBdLHJvJs2FkkMGBRMP7Gi3TbN1W9zcbr94ulRZ55HAOe+YYmzYMk5st8PiRGbZtGSFdWODI1CzDg0nm8gtsGBkEIDs1C7EYmbFhAA5lc8zMLbB183qmjxc4Op1nKJVgvlhiZDhJcWGJI1OzbN0ywhmnjTZcJzdb5Fmnl8ce+dkxBgeTpBJxlmKQSsTZMDLI5FNz5GaLZMaGeGqmwNhIip/8fIbj80XOefZm7n/4CbZtHmHDSIqlGLC0RLG0xMxskfF0iuFUcvl7HVmXWv4+NqxPMZdfYHgwybHjBY7PFZjKFRhIxDnj6WlKi0vLc7C8zHyRfH6BZ52+gdRAYnluq9/bVK7AxvQgo+tTHMoeJ71ugNMzIwAcnjxOqVhicCBBbrbAI4enGRlOsjWTjvyctnu+T2VfrB9Lbxhe8fZ7YSXfe6evj0620a3nQiIUuZnFgZuA84E8cK27T9SMvx64DlgA3u3uX+52yFJpkc/ccZADB7Mcnc6zcXSQC87ezBLwwA8nOTqdZzydYv1witn54vIyO7ZneOWLn83n//vHJ6zb6v5XXXoWiXic0uIit9w5sTxe3f5MpaxqxSr/X6r8PxGH0iLEY7C4BKlkjNLiEqXF8ng8DouL3Z6llfph3x65Og+DA3HyxeYTEgNSlWU2plMUFhaZmVtYHk/E4ZILTufVl57V9DkFTng+65/vqOr3i1aPkRkf5rwzN3X8GN3WKnOzXO3WibLNZsu0e+1J52JLS0stFzCzVwC/5+5/ama7gOvd/eWVsdOArwM7gSHgbmCnu+ebbS+bzbV+wAb+a9+j3HrXjztdDYBnbBnhsSMzke+/bOc2dl+2nc/ccZA7vv34ih5T+qPVcwo0fD6rz3dUzfaLbj5Gt7XKXM2VyaTJZnOR14myzWbLtHvtRVGfdy3rVtZMJh1rNhblx9/FwO0A7r6fcmlXPRfY5+55dz8GTADnnULWk+SLJfY/dHjF6x/KnrzDtLr/wMFJcrMFDhzMrvgxpT8eb1AOAPd7tunzeeDgJPliKdL288VS0+106zG6rVXmZrnardPq9VHdZqtttHrt9WueQhflHPkocKzmdsnMku6+0GAsB2xotbHx8XUkk9HPhx2ePE72qbnIy9dbbHL83+z+qdw8ucIiR3NN31TIGtXsrd5Ui+dyKjdPIjVAZvP6tts/PHm86X7RrcfottaZT8yVyaQjrdPq9VHdJtB0mVavvU7mqZo3BL3OGqXIp4HaFPFKiTcaSwNPtdrY1NRsRwFLxRKZsWGOTK2szKvnqaPeP54eIp2KszE9yJPTKvOQxGhc5uPpQWIxGj6f4+khSoVipLe+pWKp6X7RrcfottaZf5Gr9u1/u3VavT6q2wSaLtPqtRd1nn5FT600HYtyamUfcCVA5Rz5gzVj9wGXmNmQmW0AzgEeWnnUkw0OJNh17tNXvP7WyhUPUe/fsX0z6XUpdmzPrPgxpT+2bWn8nF5omabP547tmyNfMTE4kGi6nW49Rre1ytwsV7t1Wr0+qttstY1Wrz1dvbIyUY7I9wKXm9k9lA96rjGzPcCEu99qZh8C7qL8Q+Ht7j7f7ZCvveo5zM4VOHBwkqncPOPpIS44e1PlqpUnmcrNMzYyyPrhAWbni0zl8oynh9ixfXPNb8h/sW6r+6tXH1T/Xx2vbv/4XIGjv1RXrfRPdZ4GU3HyhfZXrRSKi4xHumql8XMKtByLon6/aPUYm8d+cdVKP0XJ3Ok6UbbZbJl2rz3pXNurVrptJVetVN+ahHId+elP38CPHn1S15F3+TryRGqAUqEYzHXkZ56xidyxlf9+p9taZW729n+tXkf+K3pqpelVK0EVeShCyqusvRNS3pCyQlh518rlhyIisoapyEVEAqciFxEJnIpcRCRwKnIRkcCpyEVEAqciFxEJ3KpfRy4iIt2lI3IRkcCpyEVEAqciFxEJnIpcRCRwKnIRkcCpyEVEAqciFxEJXJRPCFp1lY+N+zTlD3dOAXvc/d66ZV4PXAcsAO929y+vetAT8/w+8AfuvrvB2IeAF1D+cGqAl7v7sfrlVlObvGtibs1smPJ+sIXy3P2Ju2frlrkV2AQUgTl3v2KVM8aBm4DzgTxwrbtP1IyvibmsydMu71rcV58HvM/dX1x3/1XAOyjP7Sfd/WN9iHeCFln3AK8Dqvvvde7u3XrcNVnkwB7gG+7+QTMz4D+AC6uDZnYa8EZgJzAE3G1mX3f3vnxaspndCLwU+L8mi1wIvNTdJ1cvVXOt8q6xuf1z4EF3f5eZvRr4G+Cv6pY5C3iOu/frL9uuBobc/aLKZ9reALwc1txcVjXNW7HW9tW3AH8MHK+7fwD4APDblbF9ZvYld39i9VMuZ2qYteJC4DXu/p1ePPZaPbXyAeBfKl8ngfrPAX0usM/d85WjhQngvFXMV+8eyqVzksoR0NnAR81sn5m9dlWTNdY0L2trbi8Gbq98fRtwWe2gmT0NGAO+ZGZ3m9nLVjkf1GR09/2US7tqLc1lVdO8a3Rf/RHwigb3n0P5c4On3L0A3A1csqrJTtYsK8BvAddX9tPru/3AfT8iN7PXAW+qu/sad/9W5Yjm08Bf142PArVv93LAht6lLGuR9RYze3GT1dYD/wS8H0gA3zSzb7v7d3uXtGyFedfS3P68JkujHCnKR5Q3AhspH5Xd5+5Hepm1Tv18lcws6e4LDcZWZS7baJW3b/tqM+7+BTM7o8HQmpvbFlkBbgY+DEwDe83sZd08zdb3Inf3TwCfqL/fzH6T8jf/Znf/n7rhaSBdczsNPNWzkBXNsrYxC9zo7rMAZnYn5fOTPX9xrDDvmplbM/vPmiyNcjwBfKRSQkfM7ABgwGoWef18xSt5Go2tyly20Spv3/bVFViLc9uQmcWAD1Z/12BmXwF2AF0r8jV5asXMfgP4HLDb3W9rsMh9wCVmNlT5xeg5wEOrmbED2ymfG01UzutdDNzf50ytrKW53QdcWfn6CuCuuvHLgM8CmNkIcC7w8KqlK1vOWDnn/GDN2Fqay6pWeUPaVx8GzjazjWaWAl4I3NtmnX4ZBR4ys5FKqV8KdPVced+PyJt4L+VfDt1Y/l0nx9z95ZXf/E64+62V367fRfmH0dvdvf48el/VZf13YD/lKys+5e7f62+6k63Ruf1n4F/N7G6gAOyuZP0H4PPufpuZvdTM9gOLwNv68Eu6vcDlZnYPEAOuWaNzWdUu75reV81sNzDi7h+t5P4a5bn9pLsf6m+6E9VlfRvwTcpXCn3D3b/azcfSP2MrIhK4NXlqRUREolORi4gETkUuIhI4FbmISOBU5CIigVORi4gETkUuIhK4/wfLdz8wbLG56wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Visualize using scatter plot\n", + "plt.scatter(x,y,cmap='Reds')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "#Split dataset into training and test data set\n", + "x_train, x_test, y_train, y_test=train_test_split(x,y, random_state=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#Create the Logistic Regression Object\n", + "Ir = LogisticRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", + " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n", + " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n", + " verbose=0, warm_start=False)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Perform Logistic Regression\n", + "Ir.fit(x_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[3.3859551]]\n", + "[-0.47024533]\n" + ] + } + ], + "source": [ + "#Observe the coefficient and intercept\n", + "print(Ir.coef_)\n", + "print(Ir.intercept_)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "#make prediction at this point\n", + "y_pred = Ir.predict(x_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[30, 1],\n", + " [ 1, 18]], dtype=int64)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Display the confusion matrix\n", + "confusion_matrix(y_test, y_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}