Skip to content

Commit fc84cb4

Browse files
authored
[Fix] Update installation guide with new isolated requirements
Added quick installation instructions for InternNav, including installation commands and environment setup details for both Isaac Sim and Habitat environments.
1 parent 97478f3 commit fc84cb4

File tree

1 file changed

+34
-6
lines changed

1 file changed

+34
-6
lines changed

source/en/user_guide/internnav/quick_start/installation.md

Lines changed: 34 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -165,10 +165,36 @@ We provide a flexible installation tool for users who want to use InternNav for
165165

166166

167167
## Quick Installation
168+
### Install InternNav
168169
Clone the InternNav repository:
169170
```bash
170171
git clone https://github.com/InternRobotics/InternNav.git --recursive
171172
```
173+
After pull the latest code, install the package:
174+
```bash
175+
pip install -e .
176+
```
177+
By default, only the core modules are installed. It allows you to inherit the base class and implement your own models or benchmarks. In order to use different functionalities of InternNav tool, several install flags are provided:
178+
- `[isaac]`: install all requires for [Isaac environment](#isaac-sim-environment), follow the instructions below to install the evaluation environment
179+
- `[habitat]`: install all requires for [Habitat environment](#habitat-environment), follow the instructions below to install the evaluation environment
180+
- `demo`: install all requires to run the gradio demo for visualization usage
181+
- `model`: install all requires to train and evaluate all provided models included cma, rdp, navdp, internvla_n1
182+
- `internvla_n1`: quick installation of internvla_n1 to inference
183+
184+
usage example:
185+
```bash
186+
pip install -e .[model]
187+
pip install -e .[isaac,demo]
188+
pip install -e .[internvla_n1,habitat]
189+
```
190+
### Install Models
191+
For quick usage and deploy models, InternNav provide client-server design for easy use of model prediction. More details can be find at [inference_only_demo](https://githubtocolab.com/InternRobotics/InternNav/blob/main/scripts/notebooks/inference_only_demo.ipynb) and [real_world_agent_demo](). Install the requires:
192+
```bash
193+
# create a new conda env, the model server can be isolated from the evaluation env
194+
conda create -n <env> python=3.10 libxcb=1.14
195+
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu118
196+
pip install -e .[model]
197+
```
172198

173199
Our toolchain provides two Python environment solutions to accommodate different usage scenarios with the InternNav-N1 series model:
174200

@@ -177,7 +203,7 @@ Our toolchain provides two Python environment solutions to accommodate different
177203

178204
Choose the environment that best fits your specific needs to optimize your experience with the InternNav-N1 model. Note that both environments support the training of the system1 model NavDP.
179205

180-
### Isaac Sim Environment
206+
### Install with Isaac Sim Environment
181207
#### Prerequisite
182208
- Ubuntu 20.04, 22.04
183209
- Python 3.10.16 (3.10.* should be ok)
@@ -189,7 +215,7 @@ Choose the environment that best fits your specific needs to optimize your exper
189215

190216
Before proceeding with the installation, ensure that you have [Isaac Sim 4.5.0](https://docs.isaacsim.omniverse.nvidia.com/4.5.0/installation/install_workstation.html) and [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) installed.
191217

192-
**Pull our latest Docker image with everything you need**
218+
**Pull our latest Docker image with everything you need** (~17GB)
193219
```bash
194220
$ docker pull crpi-mdum1jboc8276vb5.cn-beijing.personal.cr.aliyuncs.com/iros-challenge/internnav:v1.2
195221
```
@@ -217,7 +243,7 @@ $ docker run --name internnav -it --rm --gpus all --network host \
217243
-v ${HOME}/docker/isaac-sim/data:/root/.local/share/ov/data:rw \
218244
-v ${HOME}/docker/isaac-sim/documents:/root/Documents:rw \
219245
-v ${PWD}/data/scene_data/mp3d_pe:/isaac-sim/Matterport3D/data/v1/scans:rw \
220-
crpi-mdum1jboc8276vb5.cn-beijing.personal.cr.aliyuncs.com/iros-challenge/internnav:v1.0
246+
crpi-mdum1jboc8276vb5.cn-beijing.personal.cr.aliyuncs.com/iros-challenge/internnav:v1.2
221247
```
222248

223249
<!-- To help you get started quickly, we've prepared a Docker image pre-configured with Isaac Sim 4.5 and InternUtopia. You can pull the image and run evaluations in the container using the following command:
@@ -243,13 +269,14 @@ For InternUtopia installation, you can find more detailed [docs](https://internr
243269
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu118
244270

245271
# Install other deps
246-
pip install -r requirements/isaac_requirements.txt
272+
cd Path/to/InternNav/
273+
pip install -e .[isaac,model]
247274
```
248275

249276

250277
If you need to train or evaluate models on [Habitat](#optional-habitat-environment) without physics simulation, we recommend the following setup and easier environment installation.
251278

252-
### Habitat Environment
279+
### Install with Habitat Environment
253280

254281
#### Prerequisite
255282
- Python 3.9
@@ -272,7 +299,8 @@ pip install -e habitat-baselines # install habitat_baselines
272299
Install pytorch and other requirements:
273300
```bash
274301
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
275-
pip install -r requirements/habitat_requirements.txt
302+
cd Path/to/InternNav/
303+
pip install -e .[habitat,internvla_n1]
276304
```
277305

278306

0 commit comments

Comments
 (0)