@@ -40,11 +40,11 @@ def deviations(ip: LinearNDInterpolator) -> list[np.ndarray]:
4040
4141 Parameters
4242 ----------
43- ip : `scipy.interpolate.LinearNDInterpolator` instance
43+ ip
4444
4545 Returns
4646 -------
47- deviations : list
47+ deviations
4848 The deviation per triangle.
4949 """
5050 values = ip .values / (ip .values .ptp (axis = 0 ).max () or 1 )
@@ -79,11 +79,11 @@ def areas(ip: LinearNDInterpolator) -> np.ndarray:
7979
8080 Parameters
8181 ----------
82- ip : `scipy.interpolate.LinearNDInterpolator` instance
82+ ip
8383
8484 Returns
8585 -------
86- areas : numpy.ndarray
86+ areas
8787 The area per triangle in ``ip.tri``.
8888 """
8989 p = ip .tri .points [ip .tri .simplices ]
@@ -99,11 +99,11 @@ def uniform_loss(ip: LinearNDInterpolator) -> np.ndarray:
9999
100100 Parameters
101101 ----------
102- ip : `scipy.interpolate.LinearNDInterpolator` instance
102+ ip
103103
104104 Returns
105105 -------
106- losses : numpy.ndarray
106+ losses
107107 Loss per triangle in ``ip.tri``.
108108
109109 Examples
@@ -136,7 +136,7 @@ def resolution_loss_function(
136136
137137 Returns
138138 -------
139- loss_function : callable
139+ loss_function
140140
141141 Examples
142142 --------
@@ -173,11 +173,11 @@ def minimize_triangle_surface_loss(ip: LinearNDInterpolator) -> np.ndarray:
173173
174174 Parameters
175175 ----------
176- ip : `scipy.interpolate.LinearNDInterpolator` instance
176+ ip
177177
178178 Returns
179179 -------
180- losses : numpy.ndarray
180+ losses
181181 Loss per triangle in ``ip.tri``.
182182
183183 Examples
@@ -217,11 +217,11 @@ def default_loss(ip: LinearNDInterpolator) -> np.ndarray:
217217
218218 Parameters
219219 ----------
220- ip : `scipy.interpolate.LinearNDInterpolator` instance
220+ ip
221221
222222 Returns
223223 -------
224- losses : numpy.ndarray
224+ losses
225225 Loss per triangle in ``ip.tri``.
226226 """
227227 dev = np .sum (deviations (ip ), axis = 0 )
@@ -241,15 +241,15 @@ def choose_point_in_triangle(triangle: np.ndarray, max_badness: int) -> np.ndarr
241241
242242 Parameters
243243 ----------
244- triangle : numpy.ndarray
244+ triangle
245245 The coordinates of a triangle with shape (3, 2).
246- max_badness : int
246+ max_badness
247247 The badness at which the point is either chosen on a edge or
248248 in the middle.
249249
250250 Returns
251251 -------
252- point : numpy.ndarray
252+ point
253253 The x and y coordinate of the suggested new point.
254254 """
255255 a , b , c = triangle
@@ -267,17 +267,17 @@ def choose_point_in_triangle(triangle: np.ndarray, max_badness: int) -> np.ndarr
267267 return point
268268
269269
270- def triangle_loss (ip ) :
270+ def triangle_loss (ip : LinearNDInterpolator ) -> list [ float ] :
271271 r"""Computes the average of the volumes of the simplex combined with each
272272 neighbouring point.
273273
274274 Parameters
275275 ----------
276- ip : `scipy.interpolate.LinearNDInterpolator` instance
276+ ip
277277
278278 Returns
279279 -------
280- triangle_loss : list
280+ triangle_loss
281281 The mean volume per triangle.
282282
283283 Notes
@@ -311,13 +311,13 @@ class Learner2D(BaseLearner):
311311
312312 Parameters
313313 ----------
314- function : callable
314+ function
315315 The function to learn. Must take a tuple of two real
316316 parameters and return a real number.
317- bounds : list of 2-tuples
317+ bounds
318318 A list ``[(a1, b1), (a2, b2)]`` containing bounds,
319319 one per dimension.
320- loss_per_triangle : callable, optional
320+ loss_per_triangle
321321 A function that returns the loss for every triangle.
322322 If not provided, then a default is used, which uses
323323 the deviation from a linear estimate, as well as
@@ -424,19 +424,19 @@ def to_dataframe(
424424
425425 Parameters
426426 ----------
427- with_default_function_args : bool, optional
427+ with_default_function_args
428428 Include the ``learner.function``'s default arguments as a
429429 column, by default True
430- function_prefix : str, optional
430+ function_prefix
431431 Prefix to the ``learner.function``'s default arguments' names,
432432 by default "function."
433- seed_name : str, optional
433+ seed_name
434434 Name of the seed parameter, by default "seed"
435- x_name : str, optional
435+ x_name
436436 Name of the input x value, by default "x"
437- y_name : str, optional
437+ y_name
438438 Name of the input y value, by default "y"
439- z_name : str, optional
439+ z_name
440440 Name of the output value, by default "z"
441441
442442 Returns
@@ -475,18 +475,18 @@ def load_dataframe(
475475
476476 Parameters
477477 ----------
478- df : pandas.DataFrame
478+ df
479479 The data to load.
480- with_default_function_args : bool, optional
480+ with_default_function_args
481481 The ``with_default_function_args`` used in ``to_dataframe()``,
482482 by default True
483- function_prefix : str, optional
483+ function_prefix
484484 The ``function_prefix`` used in ``to_dataframe``, by default "function."
485- x_name : str, optional
485+ x_name
486486 The ``x_name`` used in ``to_dataframe``, by default "x"
487- y_name : str, optional
487+ y_name
488488 The ``y_name`` used in ``to_dataframe``, by default "y"
489- z_name : str, optional
489+ z_name
490490 The ``z_name`` used in ``to_dataframe``, by default "z"
491491 """
492492 data = df .set_index ([x_name , y_name ])[z_name ].to_dict ()
@@ -538,7 +538,7 @@ def interpolated_on_grid(
538538
539539 Parameters
540540 ----------
541- n : int, optional
541+ n
542542 Number of points in x and y. If None (default) this number is
543543 evaluated by looking at the size of the smallest triangle.
544544
@@ -611,14 +611,14 @@ def interpolator(self, *, scaled: bool = False) -> LinearNDInterpolator:
611611
612612 Parameters
613613 ----------
614- scaled : bool
614+ scaled
615615 Use True if all points are inside the
616616 unit-square [(-0.5, 0.5), (-0.5, 0.5)] or False if
617617 the data points are inside the ``learner.bounds``.
618618
619619 Returns
620620 -------
621- interpolator : `scipy.interpolate.LinearNDInterpolator`
621+ interpolator
622622
623623 Examples
624624 --------
@@ -755,7 +755,7 @@ def remove_unfinished(self) -> None:
755755 if p not in self .data :
756756 self ._stack [p ] = np .inf
757757
758- def plot (self , n = None , tri_alpha = 0 ):
758+ def plot (self , n : int = None , tri_alpha : float = 0 ):
759759 r"""Plot the Learner2D's current state.
760760
761761 This plot function interpolates the data on a regular grid.
@@ -764,10 +764,10 @@ def plot(self, n=None, tri_alpha=0):
764764
765765 Parameters
766766 ----------
767- n : int
767+ n
768768 Number of points in x and y. If None (default) this number is
769769 evaluated by looking at the size of the smallest triangle.
770- tri_alpha : float
770+ tri_alpha
771771 The opacity ``(0 <= tri_alpha <= 1)`` of the triangles overlayed
772772 on top of the image. By default the triangulation is not visible.
773773
0 commit comments