Do Localization Methods Actually Localize Memorized Data in LLMs? A Tale of Two Benchmarks (NAACL 2024)
Ting-Yun Chang, Jesse Thomason, and Robin Jia
📜 https://arxiv.org/abs/2311.09060
- Quick Start: 
$ pip install -r requirements.txt - INJ Benchmark
- Data
 - Information Injection
 - Run Localization Methods
 
 - DEL Benchmark
- Data
 - Run Localization Methods
 
 
- Data Source : ECBD dataset from 
Onoe et al., 2022, seeREADME - Preprocessed Data: 
data/ecbd 
$ bash script/ecbd/inject.sh MODEL- MODEL: 
gpt2,gpt2-xl,EleutherAI/pythia-2.8b-deduped-v0,EleutherAI/pythia-6.9b-deduped - We release our collected data at 
data/pile/EleutherAI 
$ bash script/ecbd/METHOD_NAME.sh MODEL- e.g., 
bash script/ecbd/HC.sh EleutherAI/pythia-6.9b-deduped - METHOD_NAME
 
- Data Source: Please follow 
EleutherAI's instructionsto download pretrained data in batches - Identify memorized data with our filters: 
$ bash script/pile/find.sh MODEL - We release our collected data at 
data/pile/EleutherAI 
- We release our manually collected data at 
data/manual/memorized_data-gpt2-xl.jsonl 
- We randomly sample 2048 sequences from the Pile-dedupe to calculate perplexity
- shared by all LLMs
 
 - Tokenized data at 
data/pile/*/pile_random_batch.pt 
$ bash script/pile/METHOD_NAME.sh MODEL- For Pythia models
 - METHOD_NAME
 
$ bash script/manual/METHOD_NAME.sh- For GPT2-XL