Creating a UNet Convolutional Neural Network for interactively colourising black and white photos.
python3 - m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Uni-Freiberg: Olaf Ronneberger: 18 May 2015
Debugger Cafe: Sovit Ranjan Rath: 3 April 2023
Modified to take greyscale photos as input, then output LUV colorised photos
- No BatchNorm
 - Image input and targets Normalized: 
$\mu$ : 0.5,$\sigma$ 0.25 - Epochs: 5
 - Mean Squared Error Loss
 - No dropout
 - Learning Rate: 5e-5
 
Training loss (smoothed) / Time

| Input | Epoch 1 | Epoch 2 | Epoch 3 | Epoch 4 | Epoch 5 | Ground Truth | 
|---|
- Fix HSV normalization
 - Run performance evaluation
 - Pytorch and Rust GUI : https://medium.com/@heyamit10/loading-and-running-a-pytorch-model-in-rust-f10d2577d570
 - Dropout
 
- No normalisation
 - Improved Loss function: MSE + SSIM
 - BatchNorm
 - Skip Connection Convolution, then
 - Hintegration: Convolve hints, then integrate then convolve colour hints alongside down convolutions.
 - Dropout (not from school, from network)
 - Variable learning rate
 

