A Python library for algorithmic trading using OpenAlgo's REST APIs. This library provides a comprehensive interface for order management, market data, account operations, and strategy automation.
pip install openalgofrom openalgo import api
# Initialize the client
client = api(
api_key="your_api_key",
host="http://127.0.0.1:5000" # or your OpenAlgo server URL
)OpenAlgo's Strategy Management Module allows you to automate your trading strategies using webhooks. This enables seamless integration with any platform or custom system that can send HTTP requests. The Strategy class provides a simple interface to send signals that trigger orders based on your strategy configuration in OpenAlgo.
from openalgo import Strategy
import requests
# Initialize strategy client
client = Strategy(
host_url="http://127.0.0.1:5000", # Your OpenAlgo server URL
webhook_id="your-webhook-id" # Get this from OpenAlgo strategy section
)
try:
# Long entry (BOTH mode with position size)
response = client.strategyorder("RELIANCE", "BUY", 1)
print(f"Long entry successful: {response}")
# Short entry
response = client.strategyorder("ZOMATO", "SELL", 1)
print(f"Short entry successful: {response}")
# Close positions
response = client.strategyorder("RELIANCE", "SELL", 0) # Close long
response = client.strategyorder("ZOMATO", "BUY", 0) # Close short
except requests.exceptions.RequestException as e:
print(f"Error sending order: {e}")Strategy Modes:
- LONG_ONLY: Only processes BUY signals for long-only strategies
- SHORT_ONLY: Only processes SELL signals for short-only strategies
- BOTH: Processes both BUY and SELL signals with position sizing
The Strategy Management Module can be integrated with:
- Custom trading systems
- Technical analysis platforms
- Alert systems
- Automated trading bots
- Any system capable of making HTTP requests
Get funds and margin details of the trading account.
result = client.funds()
# Returns:
{
"data": {
"availablecash": "18083.01",
"collateral": "0.00",
"m2mrealized": "0.00",
"m2munrealized": "0.00",
"utiliseddebits": "0.00"
},
"status": "success"
}Get orderbook details with statistics.
result = client.orderbook()
# Returns order details and statistics including:
# - Total buy/sell orders
# - Total completed/open/rejected orders
# - Individual order details with statusGet execution details of trades.
result = client.tradebook()
# Returns list of executed trades with:
# - Symbol, action, quantity
# - Average price, trade value
# - Timestamp, order IDGet current positions across all segments.
result = client.positionbook()
# Returns list of positions with:
# - Symbol, exchange, product
# - Quantity, average priceGet stock holdings with P&L details.
result = client.holdings()
# Returns:
# - List of holdings with quantity and P&L
# - Statistics including total holding value
# - Total investment value and P&LGet analyzer status information.
result = client.analyzerstatus()
# Returns:
{
"data": {
"analyze_mode": false,
"mode": "live",
"total_logs": 2
},
"status": "success"
}Toggle analyzer mode between analyze and live modes.
# Switch to analyze mode (simulated responses)
result = client.analyzertoggle(mode=True)
# Switch to live mode (actual broker operations)
result = client.analyzertoggle(mode=False)
# Returns:
{
"status": "success",
"data": {
"mode": "live/analyze",
"analyze_mode": true/false,
"total_logs": 2,
"message": "Analyzer mode switched to live"
}
}Place a regular order.
result = client.placeorder(
symbol="RELIANCE",
exchange="NSE",
action="BUY",
quantity=1,
price_type="MARKET",
product="MIS"
)Place an order with position sizing.
result = client.placesmartorder(
symbol="RELIANCE",
exchange="NSE",
action="BUY",
quantity=1,
position_size=100,
price_type="MARKET",
product="MIS"
)Place multiple orders simultaneously.
orders = [
{
"symbol": "RELIANCE",
"exchange": "NSE",
"action": "BUY",
"quantity": 1,
"pricetype": "MARKET",
"product": "MIS"
},
{
"symbol": "INFY",
"exchange": "NSE",
"action": "SELL",
"quantity": 1,
"pricetype": "MARKET",
"product": "MIS"
}
]
result = client.basketorder(orders=orders)Split a large order into smaller ones.
result = client.splitorder(
symbol="YESBANK",
exchange="NSE",
action="SELL",
quantity=105,
splitsize=20,
price_type="MARKET",
product="MIS"
)Check status of a specific order.
result = client.orderstatus(
order_id="24120900146469",
strategy="Test Strategy"
)Get current open position for a symbol.
result = client.openposition(
symbol="YESBANK",
exchange="NSE",
product="CNC"
)Modify an existing order.
result = client.modifyorder(
order_id="24120900146469",
symbol="RELIANCE",
action="BUY",
exchange="NSE",
quantity=2,
price="2100",
product="MIS",
price_type="LIMIT"
)Cancel a specific order.
result = client.cancelorder(
order_id="24120900146469"
)Cancel all open orders.
result = client.cancelallorder()Close all open positions.
result = client.closeposition()The WebSocket Feed API provides real-time market data through WebSocket connections. The API supports three types of market data:
Get real-time LTP updates for multiple instruments:
from openalgo import api
import time
# Initialize the client with explicit WebSocket URL
client = api(
api_key="your_api_key",
host="http://127.0.0.1:5000", # REST API host
ws_url="ws://127.0.0.1:8765" # WebSocket server URL (can be different from REST API)
)
# Define instruments to subscribe to
instruments = [
{"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"},
{"exchange": "MCX", "symbol": "GOLD05JUN25FUT"}
]
# Callback function for data updates
def on_data_received(data):
print("LTP Update:")
print(data)
# Connect and subscribe
client.connect()
client.subscribe_ltp(instruments, on_data_received=on_data_received)
# Poll LTP data
print(client.get_ltp())
# Returns nested format:
# {"ltp": {"MCX": {"GOLDPETAL30MAY25FUT": {"timestamp": 1747761583959, "ltp": 9529.0}}}}
# Cleanup
client.unsubscribe_ltp(instruments)
client.disconnect()Get real-time quote updates with OHLC data:
from openalgo import api
# Initialize the client
client = api(
api_key="your_api_key",
host="http://127.0.0.1:5000",
ws_url="ws://127.0.0.1:8765"
)
# Define instruments
instruments = [
{"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"}
]
# Connect and subscribe
client.connect()
client.subscribe_quote(instruments)
# Poll quote data
print(client.get_quotes())
# Returns nested format:
# {"quote": {"MCX": {"GOLDPETAL30MAY25FUT": {
# "timestamp": 1747767126517,
# "open": 9430.0,
# "high": 9544.0,
# "low": 9390.0,
# "close": 9437.0,
# "ltp": 9535.0
# }}}}
# Cleanup
client.unsubscribe_quote(instruments)
client.disconnect()Get real-time market depth (order book) data:
from openalgo import api
# Initialize the client
client = api(
api_key="your_api_key",
host="http://127.0.0.1:5000",
ws_url="ws://127.0.0.1:8765"
)
# Define instruments
instruments = [
{"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"}
]
# Connect and subscribe
client.connect()
client.subscribe_depth(instruments)
# Poll depth data
print(client.get_depth())
# Returns nested format with order book:
# {"depth": {"MCX": {"GOLDPETAL30MAY25FUT": {
# "timestamp": 1747767126517,
# "ltp": 9535.0,
# "buyBook": {"1": {"price": "9533.0", "qty": "53332", "orders": "0"}, ...},
# "sellBook": {"1": {"price": "9535.0", "qty": "53332", "orders": "0"}, ...}
# }}}}
# Cleanup
client.unsubscribe_depth(instruments)
client.disconnect()Get real-time quotes for a symbol using REST API.
result = client.quotes(
symbol="RELIANCE",
exchange="NSE"
)
# Returns bid/ask, LTP, volume and other quote dataGet market depth (order book) data.
result = client.depth(
symbol="RELIANCE",
exchange="NSE"
)
# Returns market depth with top 5 bids/asksGet historical price data.
result = client.history(
symbol="RELIANCE",
exchange="NSE",
interval="5m", # Use intervals() to get supported intervals
start_date="2024-01-01",
end_date="2024-01-31"
)
# Returns pandas DataFrame with OHLC dataGet supported time intervals for historical data.
result = client.intervals()
# Returns:
{
"status": "success",
"data": {
"seconds": ["1s"],
"minutes": ["1m", "2m", "3m", "5m", "10m", "15m", "30m", "60m"],
"hours": [],
"days": ["D"],
"weeks": [],
"months": []
}
}Note: The legacy
interval()method is still available but will be deprecated in future versions.
Get details for a specific trading symbol.
result = client.symbol(
symbol="NIFTY24APR25FUT",
exchange="NFO"
)
# Returns:
{
"status": "success",
"data": {
"brexchange": "NFO",
"brsymbol": "NIFTY24APR25FUT",
"exchange": "NFO",
"expiry": "24-APR-25",
"id": 39521,
"instrumenttype": "FUTIDX",
"lotsize": 75,
"name": "NIFTY",
"strike": -0.01,
"symbol": "NIFTY24APR25FUT",
"tick_size": 0.05,
"token": "54452"
}
}Search for symbols across exchanges.
result = client.search(
query="RELIANCE"
)
# Returns list of matching symbols with details
# Search with exchange filter
result = client.search(
query="NIFTY",
exchange="NFO"
)
# Supported exchanges: NSE, NFO, BSE, BFO, MCX, CDS, BCD, NCDEX, NSE_INDEX, BSE_INDEX, MCX_INDEX
# Returns:
{
"status": "success",
"data": [
{
"symbol": "NIFTY24APR25FUT",
"name": "NIFTY",
"exchange": "NFO",
"token": "54452",
"instrumenttype": "FUTIDX",
"lotsize": 75,
"strike": -0.01,
"expiry": "24-APR-25"
},
# ... more matching symbols
]
}Get expiry dates for futures and options.
# Get expiry dates for futures
result = client.expiry(
symbol="NIFTY",
exchange="NFO",
instrumenttype="futures"
)
# Returns:
{
"status": "success",
"data": [
"31-JUL-25",
"28-AUG-25",
"25-SEP-25"
],
"message": "Found 3 expiry dates for NIFTY futures in NFO"
}
# Get expiry dates for options
result = client.expiry(
symbol="NIFTY",
exchange="NFO",
instrumenttype="options"
)
# Returns:
{
"status": "success",
"data": [
"10-JUL-25",
"17-JUL-25",
"24-JUL-25",
"31-JUL-25",
"07-AUG-25",
"28-AUG-25",
"25-SEP-25",
"24-DEC-25",
"26-MAR-26",
"25-JUN-26"
],
"message": "Found 10 expiry dates for NIFTY options in NFO"
}The Options API provides advanced options trading capabilities including Greeks calculation, auto-symbol resolution, and smart order placement.
Calculate Option Greeks (Delta, Gamma, Theta, Vega, Rho) and Implied Volatility using Black-Scholes Model.
Prerequisites:
- Install mibian library:
pip install mibian - Requires real-time LTP for underlying and option
# Basic usage - Auto-detects spot price
greeks = client.optiongreeks(
symbol="NIFTY28NOV2526000CE",
exchange="NFO"
)
# Returns: Delta, Gamma, Theta, Vega, Rho, IV, and other details
# With custom interest rate (for accurate Rho)
greeks = client.optiongreeks(
symbol="BANKNIFTY28NOV2550000CE",
exchange="NFO",
interest_rate=6.5 # Current RBI repo rate
)
# Using futures as underlying (for arbitrage strategies)
greeks = client.optiongreeks(
symbol="NIFTY28NOV2526000CE",
exchange="NFO",
underlying_symbol="NIFTY28NOV25FUT",
underlying_exchange="NFO"
)
# MCX with custom expiry time
greeks = client.optiongreeks(
symbol="CRUDEOIL17NOV255400CE",
exchange="MCX",
expiry_time="19:00" # Crude Oil expires at 7:00 PM
)
# Response format:
{
"status": "success",
"symbol": "NIFTY28NOV2526000CE",
"strike": 26000,
"option_type": "CE",
"spot_price": 25966.05,
"option_price": 85.55,
"days_to_expiry": 5.42,
"implied_volatility": 15.25,
"greeks": {
"delta": 0.5234,
"gamma": 0.000125,
"theta": -12.5678,
"vega": 18.7654,
"rho": 0.001234
}
}Get option symbol details based on underlying and offset without placing an order.
# Get ATM call symbol details
symbol_info = client.optionsymbol(
underlying="NIFTY",
exchange="NSE_INDEX",
expiry_date="28NOV24",
strike_int=50,
offset="ATM",
option_type="CE"
)
# Returns: symbol, lot size, tick size, underlying LTP
# Get OTM put for BANKNIFTY
symbol_info = client.optionsymbol(
underlying="BANKNIFTY",
exchange="NSE_INDEX",
expiry_date="28NOV24",
strike_int=100,
offset="OTM2", # 2 strikes Out-of-The-Money
option_type="PE"
)
# Using future as underlying
symbol_info = client.optionsymbol(
underlying="NIFTY28OCT25FUT",
exchange="NFO",
strike_int=50,
offset="ITM2", # 2 strikes In-The-Money
option_type="CE"
)
# Response format:
{
"status": "success",
"symbol": "NIFTY28NOV2526000CE",
"exchange": "NFO",
"lotsize": 75,
"tick_size": 0.05,
"underlying_ltp": 25966.05
}Offset Options:
ATM- At-The-MoneyITM1toITM50- In-The-Money (1-50 strikes)OTM1toOTM50- Out-of-The-Money (1-50 strikes)
Place option orders with auto-resolved symbols based on underlying and offset.
# Buy ATM call with MARKET order
result = client.optionsorder(
strategy="test_strategy",
underlying="NIFTY",
exchange="NSE_INDEX",
expiry_date="28NOV24",
strike_int=50,
offset="ATM",
option_type="CE",
action="BUY",
quantity=75,
price_type="MARKET",
product="MIS"
)
# Sell OTM put with LIMIT order
result = client.optionsorder(
strategy="nifty_scalping",
underlying="NIFTY",
exchange="NSE_INDEX",
expiry_date="28NOV24",
strike_int=50,
offset="OTM1",
option_type="PE",
action="SELL",
quantity=75,
price_type="LIMIT",
product="MIS",
price="50.0"
)
# Using future as underlying
result = client.optionsorder(
strategy="futures_arb",
underlying="NIFTY28OCT25FUT",
exchange="NFO",
strike_int=50,
offset="ITM2",
option_type="CE",
action="BUY",
quantity=75
)
# Stop Loss order
result = client.optionsorder(
strategy="protective_stop",
underlying="BANKNIFTY",
exchange="NSE_INDEX",
expiry_date="28NOV24",
strike_int=100,
offset="ATM",
option_type="PE",
action="SELL",
quantity=30,
price_type="SL",
product="MIS",
price="100.0",
trigger_price="105.0"
)
# Response format:
{
"status": "success",
"orderid": "240123000001234",
"symbol": "NIFTY28NOV2524000CE",
"underlying": "NIFTY",
"underlying_ltp": 23987.50,
"offset": "ATM",
"option_type": "CE"
}Building Option Strategies:
Iron Condor Example:
# Leg 1: Sell OTM1 Call
client.optionsorder(
underlying="NIFTY", offset="OTM1", option_type="CE",
action="SELL", quantity=75, **common_params
)
# Leg 2: Sell OTM1 Put
client.optionsorder(
underlying="NIFTY", offset="OTM1", option_type="PE",
action="SELL", quantity=75, **common_params
)
# Leg 3: Buy OTM3 Call
client.optionsorder(
underlying="NIFTY", offset="OTM3", option_type="CE",
action="BUY", quantity=75, **common_params
)
# Leg 4: Buy OTM3 Put
client.optionsorder(
underlying="NIFTY", offset="OTM3", option_type="PE",
action="BUY", quantity=75, **common_params
)Send custom alert messages to Telegram users for real-time trading notifications.
Prerequisites:
- Telegram Bot must be running in OpenAlgo settings
- User must link account using
/linkcommand in Telegram - Username is your OpenAlgo login username (NOT Telegram @username)
# Basic notification
result = client.telegram(
username="john_trader", # Your OpenAlgo login username
message="NIFTY crossed 24000! Consider taking profit."
)
# High priority urgent alert
result = client.telegram(
username="john_trader",
message="π¨ URGENT: Stop loss hit on BANKNIFTY position!",
priority=10
)
# Multi-line trading summary with emojis
result = client.telegram(
username="john_trader",
message="""π Daily Trading Summary
βββββββββββββββββββββ
β
Winning Trades: 8
β Losing Trades: 2
π° Net P&L: +βΉ15,450
π Win Rate: 80%
π― Great day! Keep it up!""",
priority=5
)
# Price alert notification
result = client.telegram(
username="trader_123",
message="π Price Alert: RELIANCE reached target price βΉ2,850",
priority=8
)
# Strategy signal alert
result = client.telegram(
username="algo_trader",
message="""π BUY Signal: RSI oversold on NIFTY 24000 CE
Entry: βΉ145.50
Target: βΉ165.00
SL: βΉ138.00""",
priority=9
)
# Risk management alert
result = client.telegram(
username="trader_123",
message="""β οΈ Risk Alert: Daily loss limit reached (-βΉ25,000)
No new positions recommended.""",
priority=10
)
# Trade execution confirmation
result = client.telegram(
username="trader_123",
message="""β
Order Executed
Symbol: BANKNIFTY 48000 CE
Action: BUY
Qty: 30
Price: βΉ245.75
Total: βΉ7,372.50""",
priority=7
)
# Response format:
{
"status": "success",
"message": "Notification sent successfully"
}Priority Levels:
- 1-3: Low Priority (General updates, market news)
- 4-6: Normal Priority (Trade signals, daily summaries)
- 7-8: High Priority (Price alerts, position updates)
- 9-10: Urgent (Stop loss hits, risk alerts)
Message Formatting:
- Bold:
*text*or**text** - Italic:
_text_or__text__ - Code:
`text` - Line breaks: Use
\nin message string - Emojis: Standard Unicode emojis supported
- Maximum length: 4096 characters
Integration with Trading:
# After order execution
if order_status == "success":
client.telegram(
username="trader",
message=f"β
Order executed: {symbol} {action} {quantity}",
priority=7
)
# Price monitoring
if current_price >= target_price:
client.telegram(
username="trader",
message=f"π― {symbol} reached target: βΉ{current_price}",
priority=9
)
# Risk management
if daily_loss >= max_loss_limit:
client.telegram(
username="trader",
message=f"π¨ Daily loss limit reached: -βΉ{daily_loss}",
priority=10
)Check the examples directory for detailed usage:
- account_test.py: Test account-related functions
- order_test.py: Test order management functions
- data_examples.py: Test market data functions
- feed_examples.py: Test WebSocket LTP feeds
- quote_example.py: Test WebSocket quote feeds
- depth_example.py: Test WebSocket market depth feeds
- options_examples.py: Test Options API (Greeks, symbol resolution, orders)
- telegram_examples.py: Test Telegram notification API
-
Update version in
openalgo/__init__.py -
Build the distribution:
python -m pip install --upgrade build
python -m build- Upload to PyPI:
python -m pip install --upgrade twine
python -m twine upload dist/*This project is licensed under the MIT License - see the LICENSE file for details.