Skip to content

marketcalls/openalgo-python-library

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

44 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

OpenAlgo Python Library

A Python library for algorithmic trading using OpenAlgo's REST APIs. This library provides a comprehensive interface for order management, market data, account operations, and strategy automation.

Installation

pip install openalgo

Quick Start

from openalgo import api

# Initialize the client
client = api(
    api_key="your_api_key",
    host="http://127.0.0.1:5000"  # or your OpenAlgo server URL
)

API Categories

1. Strategy API

Strategy Management Module

OpenAlgo's Strategy Management Module allows you to automate your trading strategies using webhooks. This enables seamless integration with any platform or custom system that can send HTTP requests. The Strategy class provides a simple interface to send signals that trigger orders based on your strategy configuration in OpenAlgo.

from openalgo import Strategy
import requests

# Initialize strategy client
client = Strategy(
    host_url="http://127.0.0.1:5000",  # Your OpenAlgo server URL
    webhook_id="your-webhook-id"        # Get this from OpenAlgo strategy section
)

try:
    # Long entry (BOTH mode with position size)
    response = client.strategyorder("RELIANCE", "BUY", 1)
    print(f"Long entry successful: {response}")

    # Short entry
    response = client.strategyorder("ZOMATO", "SELL", 1)
    print(f"Short entry successful: {response}")

    # Close positions
    response = client.strategyorder("RELIANCE", "SELL", 0)  # Close long
    response = client.strategyorder("ZOMATO", "BUY", 0)     # Close short

except requests.exceptions.RequestException as e:
    print(f"Error sending order: {e}")

Strategy Modes:

  • LONG_ONLY: Only processes BUY signals for long-only strategies
  • SHORT_ONLY: Only processes SELL signals for short-only strategies
  • BOTH: Processes both BUY and SELL signals with position sizing

The Strategy Management Module can be integrated with:

  • Custom trading systems
  • Technical analysis platforms
  • Alert systems
  • Automated trading bots
  • Any system capable of making HTTP requests

2. Accounts API

Funds

Get funds and margin details of the trading account.

result = client.funds()
# Returns:
{
    "data": {
        "availablecash": "18083.01",
        "collateral": "0.00",
        "m2mrealized": "0.00",
        "m2munrealized": "0.00",
        "utiliseddebits": "0.00"
    },
    "status": "success"
}

Orderbook

Get orderbook details with statistics.

result = client.orderbook()
# Returns order details and statistics including:
# - Total buy/sell orders
# - Total completed/open/rejected orders
# - Individual order details with status

Tradebook

Get execution details of trades.

result = client.tradebook()
# Returns list of executed trades with:
# - Symbol, action, quantity
# - Average price, trade value
# - Timestamp, order ID

Positionbook

Get current positions across all segments.

result = client.positionbook()
# Returns list of positions with:
# - Symbol, exchange, product
# - Quantity, average price

Holdings

Get stock holdings with P&L details.

result = client.holdings()
# Returns:
# - List of holdings with quantity and P&L
# - Statistics including total holding value
# - Total investment value and P&L

Analyzer Status

Get analyzer status information.

result = client.analyzerstatus()
# Returns:
{
    "data": {
        "analyze_mode": false,
        "mode": "live",
        "total_logs": 2
    },
    "status": "success"
}

Analyzer Toggle

Toggle analyzer mode between analyze and live modes.

# Switch to analyze mode (simulated responses)
result = client.analyzertoggle(mode=True)

# Switch to live mode (actual broker operations)
result = client.analyzertoggle(mode=False)

# Returns:
{
    "status": "success",
    "data": {
        "mode": "live/analyze",
        "analyze_mode": true/false,
        "total_logs": 2,
        "message": "Analyzer mode switched to live"
    }
}

3. Orders API

Place Order

Place a regular order.

result = client.placeorder(
    symbol="RELIANCE",
    exchange="NSE",
    action="BUY",
    quantity=1,
    price_type="MARKET",
    product="MIS"
)

Place Smart Order

Place an order with position sizing.

result = client.placesmartorder(
    symbol="RELIANCE",
    exchange="NSE",
    action="BUY",
    quantity=1,
    position_size=100,
    price_type="MARKET",
    product="MIS"
)

Basket Order

Place multiple orders simultaneously.

orders = [
    {
        "symbol": "RELIANCE",
        "exchange": "NSE",
        "action": "BUY",
        "quantity": 1,
        "pricetype": "MARKET",
        "product": "MIS"
    },
    {
        "symbol": "INFY",
        "exchange": "NSE",
        "action": "SELL",
        "quantity": 1,
        "pricetype": "MARKET",
        "product": "MIS"
    }
]
result = client.basketorder(orders=orders)

Split Order

Split a large order into smaller ones.

result = client.splitorder(
    symbol="YESBANK",
    exchange="NSE",
    action="SELL",
    quantity=105,
    splitsize=20,
    price_type="MARKET",
    product="MIS"
)

Order Status

Check status of a specific order.

result = client.orderstatus(
    order_id="24120900146469",
    strategy="Test Strategy"
)

Open Position

Get current open position for a symbol.

result = client.openposition(
    symbol="YESBANK",
    exchange="NSE",
    product="CNC"
)

Modify Order

Modify an existing order.

result = client.modifyorder(
    order_id="24120900146469",
    symbol="RELIANCE",
    action="BUY",
    exchange="NSE",
    quantity=2,
    price="2100",
    product="MIS",
    price_type="LIMIT"
)

Cancel Order

Cancel a specific order.

result = client.cancelorder(
    order_id="24120900146469"
)

Cancel All Orders

Cancel all open orders.

result = client.cancelallorder()

Close Position

Close all open positions.

result = client.closeposition()

4. WebSocket Feed API

The WebSocket Feed API provides real-time market data through WebSocket connections. The API supports three types of market data:

LTP (Last Traded Price) Feed

Get real-time LTP updates for multiple instruments:

from openalgo import api
import time

# Initialize the client with explicit WebSocket URL
client = api(
    api_key="your_api_key",
    host="http://127.0.0.1:5000",  # REST API host
    ws_url="ws://127.0.0.1:8765"   # WebSocket server URL (can be different from REST API)
)

# Define instruments to subscribe to
instruments = [
    {"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"},
    {"exchange": "MCX", "symbol": "GOLD05JUN25FUT"}
]

# Callback function for data updates
def on_data_received(data):
    print("LTP Update:")
    print(data)

# Connect and subscribe
client.connect()
client.subscribe_ltp(instruments, on_data_received=on_data_received)

# Poll LTP data
print(client.get_ltp())
# Returns nested format:
# {"ltp": {"MCX": {"GOLDPETAL30MAY25FUT": {"timestamp": 1747761583959, "ltp": 9529.0}}}}

# Cleanup
client.unsubscribe_ltp(instruments)
client.disconnect()

Quote Feed

Get real-time quote updates with OHLC data:

from openalgo import api

# Initialize the client
client = api(
    api_key="your_api_key",
    host="http://127.0.0.1:5000",
    ws_url="ws://127.0.0.1:8765"
)

# Define instruments
instruments = [
    {"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"}
]

# Connect and subscribe
client.connect()
client.subscribe_quote(instruments)

# Poll quote data
print(client.get_quotes())
# Returns nested format:
# {"quote": {"MCX": {"GOLDPETAL30MAY25FUT": {
#   "timestamp": 1747767126517,
#   "open": 9430.0,
#   "high": 9544.0,
#   "low": 9390.0,
#   "close": 9437.0,
#   "ltp": 9535.0
# }}}}

# Cleanup
client.unsubscribe_quote(instruments)
client.disconnect()

Market Depth Feed

Get real-time market depth (order book) data:

from openalgo import api

# Initialize the client
client = api(
    api_key="your_api_key",
    host="http://127.0.0.1:5000",
    ws_url="ws://127.0.0.1:8765"
)

# Define instruments
instruments = [
    {"exchange": "MCX", "symbol": "GOLDPETAL30MAY25FUT"}
]

# Connect and subscribe
client.connect()
client.subscribe_depth(instruments)

# Poll depth data
print(client.get_depth())
# Returns nested format with order book:
# {"depth": {"MCX": {"GOLDPETAL30MAY25FUT": {
#   "timestamp": 1747767126517,
#   "ltp": 9535.0,
#   "buyBook": {"1": {"price": "9533.0", "qty": "53332", "orders": "0"}, ...},
#   "sellBook": {"1": {"price": "9535.0", "qty": "53332", "orders": "0"}, ...}
# }}}}

# Cleanup
client.unsubscribe_depth(instruments)
client.disconnect()

5. REST Data API

Quotes

Get real-time quotes for a symbol using REST API.

result = client.quotes(
    symbol="RELIANCE",
    exchange="NSE"
)
# Returns bid/ask, LTP, volume and other quote data

Market Depth

Get market depth (order book) data.

result = client.depth(
    symbol="RELIANCE",
    exchange="NSE"
)
# Returns market depth with top 5 bids/asks

Historical Data

Get historical price data.

result = client.history(
    symbol="RELIANCE",
    exchange="NSE",
    interval="5m",  # Use intervals() to get supported intervals
    start_date="2024-01-01",
    end_date="2024-01-31"
)
# Returns pandas DataFrame with OHLC data

Intervals

Get supported time intervals for historical data.

result = client.intervals()
# Returns:
{
    "status": "success",
    "data": {
        "seconds": ["1s"],
        "minutes": ["1m", "2m", "3m", "5m", "10m", "15m", "30m", "60m"],
        "hours": [],
        "days": ["D"],
        "weeks": [],
        "months": []
    }
}

Note: The legacy interval() method is still available but will be deprecated in future versions.

Symbol

Get details for a specific trading symbol.

result = client.symbol(
    symbol="NIFTY24APR25FUT",
    exchange="NFO"
)
# Returns:
{
    "status": "success",
    "data": {
        "brexchange": "NFO",
        "brsymbol": "NIFTY24APR25FUT",
        "exchange": "NFO",
        "expiry": "24-APR-25",
        "id": 39521,
        "instrumenttype": "FUTIDX",
        "lotsize": 75,
        "name": "NIFTY",
        "strike": -0.01,
        "symbol": "NIFTY24APR25FUT",
        "tick_size": 0.05,
        "token": "54452"
    }
}

Search

Search for symbols across exchanges.

result = client.search(
    query="RELIANCE"
)
# Returns list of matching symbols with details

# Search with exchange filter
result = client.search(
    query="NIFTY",
    exchange="NFO"
)
# Supported exchanges: NSE, NFO, BSE, BFO, MCX, CDS, BCD, NCDEX, NSE_INDEX, BSE_INDEX, MCX_INDEX
# Returns:
{
    "status": "success",
    "data": [
        {
            "symbol": "NIFTY24APR25FUT",
            "name": "NIFTY",
            "exchange": "NFO",
            "token": "54452",
            "instrumenttype": "FUTIDX",
            "lotsize": 75,
            "strike": -0.01,
            "expiry": "24-APR-25"
        },
        # ... more matching symbols
    ]
}

Expiry

Get expiry dates for futures and options.

# Get expiry dates for futures
result = client.expiry(
    symbol="NIFTY",
    exchange="NFO",
    instrumenttype="futures"
)
# Returns:
{
    "status": "success",
    "data": [
        "31-JUL-25",
        "28-AUG-25",
        "25-SEP-25"
    ],
    "message": "Found 3 expiry dates for NIFTY futures in NFO"
}

# Get expiry dates for options
result = client.expiry(
    symbol="NIFTY",
    exchange="NFO",
    instrumenttype="options"
)
# Returns:
{
    "status": "success",
    "data": [
        "10-JUL-25",
        "17-JUL-25",
        "24-JUL-25",
        "31-JUL-25",
        "07-AUG-25",
        "28-AUG-25",
        "25-SEP-25",
        "24-DEC-25",
        "26-MAR-26",
        "25-JUN-26"
    ],
    "message": "Found 10 expiry dates for NIFTY options in NFO"
}

6. Options API

The Options API provides advanced options trading capabilities including Greeks calculation, auto-symbol resolution, and smart order placement.

Option Greeks

Calculate Option Greeks (Delta, Gamma, Theta, Vega, Rho) and Implied Volatility using Black-Scholes Model.

Prerequisites:

  • Install mibian library: pip install mibian
  • Requires real-time LTP for underlying and option
# Basic usage - Auto-detects spot price
greeks = client.optiongreeks(
    symbol="NIFTY28NOV2526000CE",
    exchange="NFO"
)
# Returns: Delta, Gamma, Theta, Vega, Rho, IV, and other details

# With custom interest rate (for accurate Rho)
greeks = client.optiongreeks(
    symbol="BANKNIFTY28NOV2550000CE",
    exchange="NFO",
    interest_rate=6.5  # Current RBI repo rate
)

# Using futures as underlying (for arbitrage strategies)
greeks = client.optiongreeks(
    symbol="NIFTY28NOV2526000CE",
    exchange="NFO",
    underlying_symbol="NIFTY28NOV25FUT",
    underlying_exchange="NFO"
)

# MCX with custom expiry time
greeks = client.optiongreeks(
    symbol="CRUDEOIL17NOV255400CE",
    exchange="MCX",
    expiry_time="19:00"  # Crude Oil expires at 7:00 PM
)

# Response format:
{
    "status": "success",
    "symbol": "NIFTY28NOV2526000CE",
    "strike": 26000,
    "option_type": "CE",
    "spot_price": 25966.05,
    "option_price": 85.55,
    "days_to_expiry": 5.42,
    "implied_volatility": 15.25,
    "greeks": {
        "delta": 0.5234,
        "gamma": 0.000125,
        "theta": -12.5678,
        "vega": 18.7654,
        "rho": 0.001234
    }
}

Option Symbol

Get option symbol details based on underlying and offset without placing an order.

# Get ATM call symbol details
symbol_info = client.optionsymbol(
    underlying="NIFTY",
    exchange="NSE_INDEX",
    expiry_date="28NOV24",
    strike_int=50,
    offset="ATM",
    option_type="CE"
)
# Returns: symbol, lot size, tick size, underlying LTP

# Get OTM put for BANKNIFTY
symbol_info = client.optionsymbol(
    underlying="BANKNIFTY",
    exchange="NSE_INDEX",
    expiry_date="28NOV24",
    strike_int=100,
    offset="OTM2",  # 2 strikes Out-of-The-Money
    option_type="PE"
)

# Using future as underlying
symbol_info = client.optionsymbol(
    underlying="NIFTY28OCT25FUT",
    exchange="NFO",
    strike_int=50,
    offset="ITM2",  # 2 strikes In-The-Money
    option_type="CE"
)

# Response format:
{
    "status": "success",
    "symbol": "NIFTY28NOV2526000CE",
    "exchange": "NFO",
    "lotsize": 75,
    "tick_size": 0.05,
    "underlying_ltp": 25966.05
}

Offset Options:

  • ATM - At-The-Money
  • ITM1 to ITM50 - In-The-Money (1-50 strikes)
  • OTM1 to OTM50 - Out-of-The-Money (1-50 strikes)

Options Order

Place option orders with auto-resolved symbols based on underlying and offset.

# Buy ATM call with MARKET order
result = client.optionsorder(
    strategy="test_strategy",
    underlying="NIFTY",
    exchange="NSE_INDEX",
    expiry_date="28NOV24",
    strike_int=50,
    offset="ATM",
    option_type="CE",
    action="BUY",
    quantity=75,
    price_type="MARKET",
    product="MIS"
)

# Sell OTM put with LIMIT order
result = client.optionsorder(
    strategy="nifty_scalping",
    underlying="NIFTY",
    exchange="NSE_INDEX",
    expiry_date="28NOV24",
    strike_int=50,
    offset="OTM1",
    option_type="PE",
    action="SELL",
    quantity=75,
    price_type="LIMIT",
    product="MIS",
    price="50.0"
)

# Using future as underlying
result = client.optionsorder(
    strategy="futures_arb",
    underlying="NIFTY28OCT25FUT",
    exchange="NFO",
    strike_int=50,
    offset="ITM2",
    option_type="CE",
    action="BUY",
    quantity=75
)

# Stop Loss order
result = client.optionsorder(
    strategy="protective_stop",
    underlying="BANKNIFTY",
    exchange="NSE_INDEX",
    expiry_date="28NOV24",
    strike_int=100,
    offset="ATM",
    option_type="PE",
    action="SELL",
    quantity=30,
    price_type="SL",
    product="MIS",
    price="100.0",
    trigger_price="105.0"
)

# Response format:
{
    "status": "success",
    "orderid": "240123000001234",
    "symbol": "NIFTY28NOV2524000CE",
    "underlying": "NIFTY",
    "underlying_ltp": 23987.50,
    "offset": "ATM",
    "option_type": "CE"
}

Building Option Strategies:

Iron Condor Example:

# Leg 1: Sell OTM1 Call
client.optionsorder(
    underlying="NIFTY", offset="OTM1", option_type="CE",
    action="SELL", quantity=75, **common_params
)

# Leg 2: Sell OTM1 Put
client.optionsorder(
    underlying="NIFTY", offset="OTM1", option_type="PE",
    action="SELL", quantity=75, **common_params
)

# Leg 3: Buy OTM3 Call
client.optionsorder(
    underlying="NIFTY", offset="OTM3", option_type="CE",
    action="BUY", quantity=75, **common_params
)

# Leg 4: Buy OTM3 Put
client.optionsorder(
    underlying="NIFTY", offset="OTM3", option_type="PE",
    action="BUY", quantity=75, **common_params
)

7. Telegram Notification API

Send custom alert messages to Telegram users for real-time trading notifications.

Prerequisites:

  1. Telegram Bot must be running in OpenAlgo settings
  2. User must link account using /link command in Telegram
  3. Username is your OpenAlgo login username (NOT Telegram @username)
# Basic notification
result = client.telegram(
    username="john_trader",  # Your OpenAlgo login username
    message="NIFTY crossed 24000! Consider taking profit."
)

# High priority urgent alert
result = client.telegram(
    username="john_trader",
    message="🚨 URGENT: Stop loss hit on BANKNIFTY position!",
    priority=10
)

# Multi-line trading summary with emojis
result = client.telegram(
    username="john_trader",
    message="""πŸ“Š Daily Trading Summary
─────────────────────
βœ… Winning Trades: 8
❌ Losing Trades: 2
πŸ’° Net P&L: +β‚Ή15,450
πŸ“ˆ Win Rate: 80%

🎯 Great day! Keep it up!""",
    priority=5
)

# Price alert notification
result = client.telegram(
    username="trader_123",
    message="πŸ”” Price Alert: RELIANCE reached target price β‚Ή2,850",
    priority=8
)

# Strategy signal alert
result = client.telegram(
    username="algo_trader",
    message="""πŸ“ˆ BUY Signal: RSI oversold on NIFTY 24000 CE
Entry: β‚Ή145.50
Target: β‚Ή165.00
SL: β‚Ή138.00""",
    priority=9
)

# Risk management alert
result = client.telegram(
    username="trader_123",
    message="""⚠️ Risk Alert: Daily loss limit reached (-β‚Ή25,000)
No new positions recommended.""",
    priority=10
)

# Trade execution confirmation
result = client.telegram(
    username="trader_123",
    message="""βœ… Order Executed
Symbol: BANKNIFTY 48000 CE
Action: BUY
Qty: 30
Price: β‚Ή245.75
Total: β‚Ή7,372.50""",
    priority=7
)

# Response format:
{
    "status": "success",
    "message": "Notification sent successfully"
}

Priority Levels:

  • 1-3: Low Priority (General updates, market news)
  • 4-6: Normal Priority (Trade signals, daily summaries)
  • 7-8: High Priority (Price alerts, position updates)
  • 9-10: Urgent (Stop loss hits, risk alerts)

Message Formatting:

  • Bold: *text* or **text**
  • Italic: _text_ or __text__
  • Code: `text`
  • Line breaks: Use \n in message string
  • Emojis: Standard Unicode emojis supported
  • Maximum length: 4096 characters

Integration with Trading:

# After order execution
if order_status == "success":
    client.telegram(
        username="trader",
        message=f"βœ… Order executed: {symbol} {action} {quantity}",
        priority=7
    )

# Price monitoring
if current_price >= target_price:
    client.telegram(
        username="trader",
        message=f"🎯 {symbol} reached target: β‚Ή{current_price}",
        priority=9
    )

# Risk management
if daily_loss >= max_loss_limit:
    client.telegram(
        username="trader",
        message=f"🚨 Daily loss limit reached: -β‚Ή{daily_loss}",
        priority=10
    )

Examples

Check the examples directory for detailed usage:

  • account_test.py: Test account-related functions
  • order_test.py: Test order management functions
  • data_examples.py: Test market data functions
  • feed_examples.py: Test WebSocket LTP feeds
  • quote_example.py: Test WebSocket quote feeds
  • depth_example.py: Test WebSocket market depth feeds
  • options_examples.py: Test Options API (Greeks, symbol resolution, orders)
  • telegram_examples.py: Test Telegram notification API

Publishing to PyPI

  1. Update version in openalgo/__init__.py

  2. Build the distribution:

python -m pip install --upgrade build
python -m build
  1. Upload to PyPI:
python -m pip install --upgrade twine
python -m twine upload dist/*

License

This project is licensed under the MIT License - see the LICENSE file for details.

Releases

No releases published

Packages

No packages published

Languages