Evaluation library is the fastest way for inference a model CatBoost. The library provides a C API.
The C API interface can be accessed from any programming language (example Golang + Cgo).
Prebuilt shared library (*.so | *.dylib) artifacts are available of the releases page on GitHub CatBoost project.
The shared library:
- Should be in 
/usr/local/lib - Or set path in environment 
CATBOOST_LIBRARY_PATH - Or set path manual in source code 
SetSharedLibraryPath(see example below) 
For more information, see https://catboost.ai/en/docs/concepts/c-plus-plus-api_dynamic-c-pluplus-wrapper.
| Previous versions | v1.2.2 | v1.2.3 | v1.2.4 | v1.2.5 | v1.2.6 | v1.2.7 | v1.2.8 | 
|---|---|---|---|---|---|---|---|
| π« (not testing) | β | β | β | β | β | β | β | 
Supported functionality (https://catboost.ai/en/docs/concepts/python-quickstart):
- CatBoostRegressor β
 - CatBoostClassifier β
 - CatBoostRanker β
 
Supported prediction types (https://github.com/catboost/catboost/blob/master/catboost/libs/model/enums.h):
- RawFormulaVal β
 - Probability β
 - Class β
 - RMSEWithUncertainty β
 - Exponent β
 
Supported operating system and architectures:
| Operating system | CPU architectures | GPU support using CUDA | 
|---|---|---|
| MacOS | β (x86_64) | π« | 
| Linux | β (x86_64) | β (x86_64) | 
| Windows 10 and 11 | π« | π« | 
If you use GPU - only device 0 is supported for now. More details: catboost/catboost#2774.
Supported Type:
- Numeric β
 - Categorical β (https://catboost.ai/en/docs/features/categorical-features)
 - Text π« (https://catboost.ai/en/docs/features/text-features)
 - Embeddings π« (https://catboost.ai/en/docs/features/embeddings-features)
 
- Install catboost-cgo:
 
go get github.com/mirecl/catboost-cgo- 
Download CatBoost shared library from release page: https://github.com/catboost/catboost/releases
 - 
Save CatBoost shared library in
/usr/local/libor manual set path: 
import (
 cb "github.com/mirecl/catboost-cgo/catboost"
)
func main(){
  cb.SetSharedLibraryPath(...)
}- See examples of use