This repository contains tutorials and experiments for generative models on network trace datasets.
Note
Hardware Requirements: This project is currently tested and supported only on Linux (x86_64). M series Mac is not supported yet.
Step 1: Download datasets from Google Drive link and put under data/ folder.
Step 2: Install dependencies using conda:
conda create --name generative-trace-tutorials python=3.9
conda activate generative-trace-tutorials
pip install -r requirements.txtNote: D3VAE has special dependencies. Follow the doc.
python3 driver.py \
--config_partition <config_partition> \
--dataset_name ${dataset_name} \
--model_name ${model_name} \
--order_csv_by_timestampconfig_partition:small-scale|large-scale| ... (see config_small_scale.py for more details)dataset_name:caida | dc | ca | m57 | ugr16 | cidds | tonmodel name:realtabformer-tabularrealtabformer-timeseriesctgantabddpmcrossformerd3vaescinetdlinearpatchtst
A quick example:
python3 driver.py \
--config_partition small-scale \
--dataset_name caida \
--model_name realtabformer-tabular \
--order_csv_by_timestamp- Bump Python version to 3.12
- Add support for M series Mac