Skip to content

netsharecmu/generative-trace-tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Trace Tutorials

This repository contains tutorials and experiments for generative models on network trace datasets.

Getting Started

Note

Hardware Requirements: This project is currently tested and supported only on Linux (x86_64). M series Mac is not supported yet.

Step 1: Download datasets from Google Drive link and put under data/ folder.

Step 2: Install dependencies using conda:

conda create --name generative-trace-tutorials python=3.9
conda activate generative-trace-tutorials
pip install -r requirements.txt

Note: D3VAE has special dependencies. Follow the doc.

Run experiments (Example)

python3 driver.py \
    --config_partition <config_partition> \
    --dataset_name ${dataset_name} \
    --model_name ${model_name} \
    --order_csv_by_timestamp
  • config_partition: small-scale | large-scale | ... (see config_small_scale.py for more details)
  • dataset_name: caida | dc | ca | m57 | ugr16 | cidds | ton
  • model name:
    • realtabformer-tabular
    • realtabformer-timeseries
    • ctgan
    • tabddpm
    • crossformer
    • d3vae
    • scinet
    • dlinear
    • patchtst

A quick example:

python3 driver.py \
    --config_partition small-scale \
    --dataset_name caida \
    --model_name realtabformer-tabular \
    --order_csv_by_timestamp

TODO

  • Bump Python version to 3.12
  • Add support for M series Mac

About

Tutorials on generative models for synthetic network trace generation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •