televid.py: Provide the basic model for identification of single wave file.run_through.py: Only for automatically test every mp3 and wave file in./test_audiofolder.run_televid_example.py: The example for using the Televid model intelevid.py./golden_wav: The folder contains wave files to generate golden patterns for matching. Thegolden_ptns.pklfile in it is to speed up the loading (if exists)./python_speech_features: The package for MFCC feature.
- In Busy
- Original Texts
- 您所撥的電話忙線中,請稍後再撥。 The number you have dial is busy. Please try again later.
 
 - Keywords
- 忙線中
 
 
 - Original Texts
 - No Response
- Original Texts
- 您所撥的電話無人回應。
 - 您所撥的電話無法接聽,請稍後再撥。The number you has dial is not available. Please try again later.
 
 - Keywords
- 回應
 - 接聽
 
 
 - Original Texts
 - Voice Mail
- Original Texts
- 您的電話將轉接到語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按#字鍵這是09XX-XXXXXX的信箱,嗶聲後請留言。
 - 轉接語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按 * 字鍵。您已進入09XX-XXXXXX的信箱,嗶聲後請留言。
 - 嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按 * 字鍵。您已進入09XX-XXXXXX的信箱,嗶聲後請留言。
 - 您的電話將轉接到語音信箱,嘟聲後開始計費,如不留言請掛斷。快速留言嘟聲後請按一次 * 字鍵。
 
 - Keywords
- 語音信箱
 - 嘟聲後
 
 
 - Original Texts
 
The file is generated by calling save_mfcc_training_dataset() of TestTelevid
object.
Is the pickle, Python object serialization, object. You should use
pickle.loads() to open it.
A list contains multiple tuples, and being one data input, each tuple contains two variables: difference indices dictionary (input) and the final outcome (desire output). The following is the example structure.
[
    (
        {'in_busy.wav': 285.38331120979802,
         'no_response_A.wav': 3430.9011939973934,
         'no_response_B.wav': 2380.5107159615013,
         'voice_mail_A_1.wav': 3118.0131102683249,
         'voice_mail_A_2.wav': 2543.842005054099,
         'voice_mail_B.wav': 3217.5192698396595,
         'voice_mail_C.wav': 3176.1896581534188,
         'voice_mail_D_1.wav': 2749.3900560206898,
         'voice_mail_D_2.wav': 2634.9694942389929},
     'inbusy'),
    (
        {'in_busy.wav': 2306.9580628421327,
         'no_response_A.wav':3727.4782066043199,
         'no_response_B.wav': 2987.7147191635795,
         'voice_mail_A_1.wav': 2345.7121554450459,
         'voice_mail_A_2.wav': 2477.9789650889234,
         'voice_mail_B.wav': 328.95530907943493,
         'voice_mail_C.wav': 332.53955702325237,
         'voice_mail_D_1.wav': 2714.4307011467545,
         'voice_mail_D_2.wav': 1705.1556381267567},
     'voicemail')]The input of the trained module must be a dict() and then return the
classified result.
SciPy>=1.1.0
pip install scipyNumPy>=1.15.0
pip install numpyFFmpeg-Python>=0.1.16
pip install ffmpeg-pythonFFmpeg (for the FFmpeg-Python package)
apt-get install ffmpeg