You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The MNIST classification problem is a fundamental machine learning task that involves recognizing handwritten digits (0- 9) from a dataset of 70,000 grayscale images (28x28 pixels each). It serves as a benchmark for evaluating machine learning models, particularly neural networks.
CUDA C++ practice project for RTX 4070 SUPER — explore GPU concurrency, pinned memory, and Nsight profiling. Includes SAXPY and 2D blur kernels to train optimization, stream overlap, and timing analysis for NVIDIA Developer Technology Engineering skillset.
A CUDA C++ demo showing how to overlap data transfer and kernel execution using multiple streams and pinned (page-locked) host memory. This project illustrates asynchronous memcpy, event timing, and performance benefits of concurrent GPU execution — essential for building high-throughput pipelines.